L2' loop is critical for caspase-7 active site formation.

نویسندگان

  • Witold A Witkowski
  • Jeanne A Hardy
چکیده

The active sites of caspases are composed of four mobile loops. A loop (L2) from one half of the dimer interacts with a loop (L2') from the other half of the dimer to bind substrate. In an inactive form, the two L2' loops form a cross-dimer hydrogen-bond network over the dimer interface. Although the L2' loop has been implicated as playing a central role in the formation of the active-site loop bundle, its precise role in catalysis has not been shown. A detailed understanding of the active and inactive conformations is essential to control the caspase function. We have interrogated the contributions of the residues in the L2' loop to catalytic function and enzyme stability. In wild-type and all mutants, active-site binding results in substantial stabilization of the complex. One mutation, P214A, is significantly destabilized in the ligand-free conformation, but is as stable as wild type when bound to substrate, indicating that caspase-7 rests in different conformations in the absence and presence of substrate. Residues K212 and I213 in the L2' loop are shown to be essential for substrate-binding and thus proper catalytic function of the caspase. In the crystal structure of I213A, the void created by side-chain deletion is compensated for by rearrangement of tyrosine 211 to fill the void, suggesting that the requirements of substrate-binding are sufficiently strong to induce the active conformation. Thus, although the L2' loop makes no direct contacts with substrate, it is essential for buttressing the substrate-binding groove and is central to native catalytic efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular insight into the role of the leucine residue on the L2 loop in the catalytic activity of caspases 3 and 7.

Various apoptotic signals can activate caspases 3 and 7 by triggering the L2 loop cleavage of their proenzymes. These two enzymes have highly similar structures and functions, and serve as apoptotic executioners. The structures of caspase 7 and procaspase 7 differ significantly in the conformation of the loops constituting the active site, indicating that the enzyme undergoes a large structural...

متن کامل

Dissecting an allosteric switch in caspase-7 using chemical and mutational probes.

Apoptotic caspases, such as caspase-7, are stored as inactive protease zymogens, and when activated, lead to a fate-determining switch to induce cell death. We previously discovered small molecule thiol-containing inhibitors that when tethered revealed an allosteric site and trapped a conformation similar to the zymogen form of the enzyme. We noted three structural transitions that the compound...

متن کامل

Crystal structures of human caspase 6 reveal a new mechanism for intramolecular cleavage self-activation.

Dimeric effectors caspase 3 and caspase 7 are activated by initiator caspase processing. In this study, we report the crystal structures of effector caspase 6 (CASP6) zymogen and N-Acetyl-Val-Glu-Ile-Asp-al-inhibited CASP6. Both of these forms of CASP6 have a dimeric structure, and in CASP6 zymogen the intersubunit cleavage site (190)TEVD(193) is well structured and inserts into the active site...

متن کامل

Dimer formation drives the activation of the cell death protease caspase 9.

A critical step in the induction of apoptosis is the activation of the apoptotic initiator caspase 9. We show that at its normal physiological concentration, caspase 9 is primarily an inactive monomer (zymogen), and that activity is associated with a dimeric species. At the high concentrations used for crystal formation, caspase 9 is dimeric, and the structure reveals two very different active-...

متن کامل

Caspase-6 latent state stability relies on helical propensity.

Caspase-6 is an apoptotic protease that also plays important roles in neurodegenerative disorders, including Huntington's and Alzheimer's diseases. Caspase-6 is the only caspase known to form a latent state in which two extended helices block access to the active site. These helices must convert to strands for binding substrate. We probed the interconverting region and found that the absence of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Protein science : a publication of the Protein Society

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 2009